

Herstellung und Aufreinigung vom Radionuklid Terbium-161 für klinische Studien

Pascal V. Grundler
PSI Zentrum für radiopharmazeutische
Wisssenschaften

SVMTR Fortbildung Nuklearmedizin - Safety first Zürich, 9. Novmber 2024

Wozu Terbium-161?

	Lu 177						
7 m	160.44 d	6.647 d					
β ⁻ γ 1003 89	β- 0.2 m ₁ IT (116) e ⁻ , γ 414 319 σ 3.2	β- 0.5 γ 208 113 g σ 1000					

Zerfall- β - (134 keV) modus

Halbwert- 6.65 d

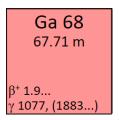
zeit

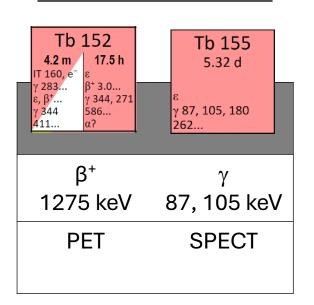
Haupt β^{-} -Therapy

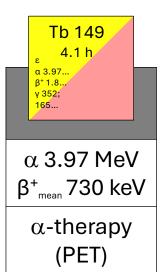
anwendung

Tb 161 6.95 d β- 0.5, 0.6... γ 26, 49, 75... e-

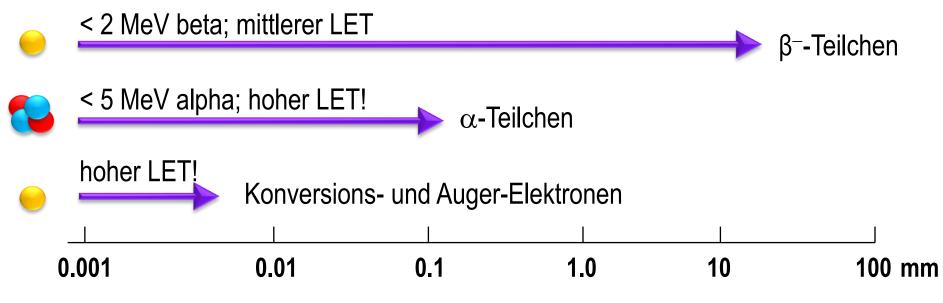
Zerfall- β^- (154 keV) modus Auger e


Halbwert- 6.95 d


zeit

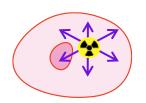

Haupt β^{-} -Therapy


anwendung

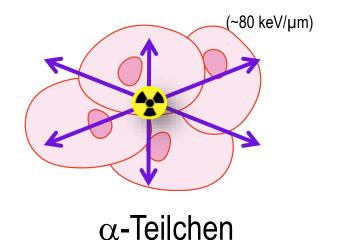


Perfekte theranostische Kombination

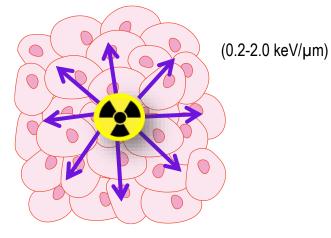
Zielgerichtete Radionuklid-Therapie


Targeted radionuclide therapy (TRT)

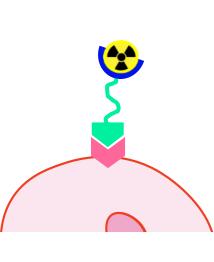
TRT ist eine hoch geschätzte Methode zur Behandlung von Krebs dank gezielter Zerstörung von Krebszellen.


Einzelne Zellen

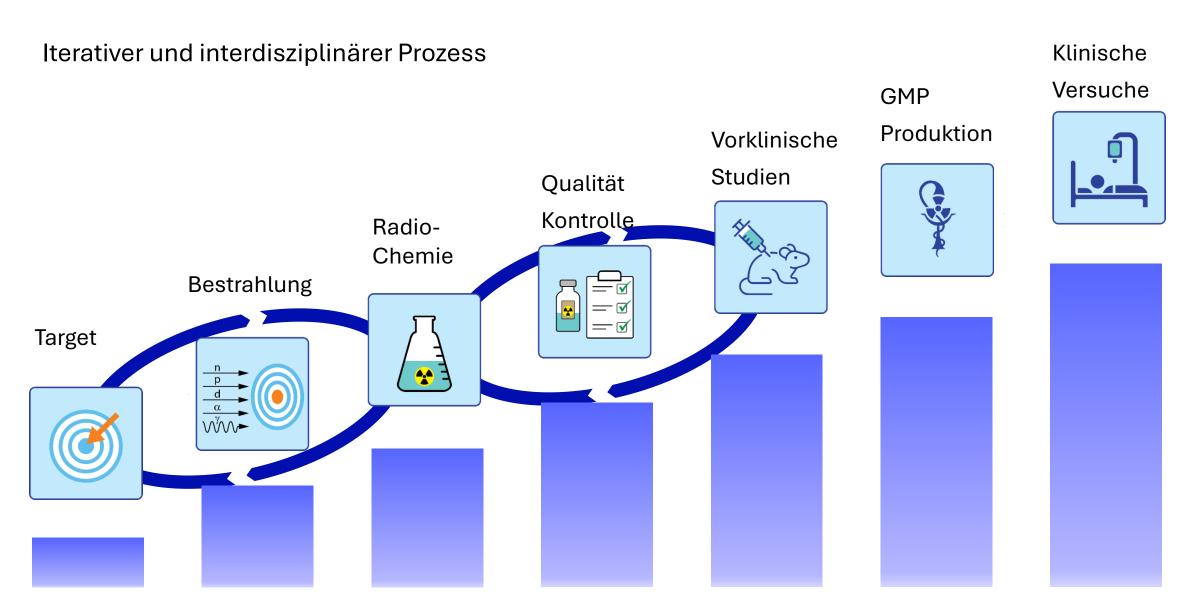
(4-26 keV/µm)



Konversions- & Auger-Elektronen

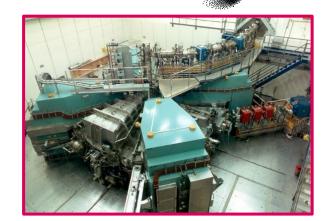

Kleine Metastasen

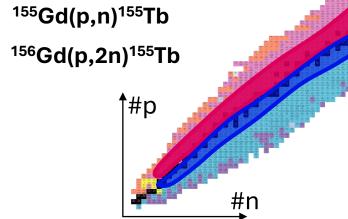
Grosse Metastasen

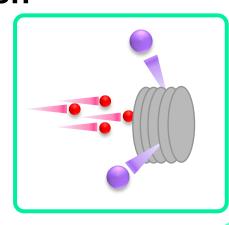


β-Teilchen

Radionuklid Entwicklung für die Nuklearmedizin

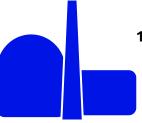





Produktion Methoden

PSI

Geladene Teilchen von Beschleunigern (Zyklotron)



Z+1

Neutronen aus Reaktoren

 160 Gd $(n,\gamma)^{161}$ Gd

PSI

 ${}_{Z}^{A}X$ ${}_{Z}^{A+1}X$

¹⁶¹Tb Ausgangsmaterial und Bestrahlung

Ausgangsmaterial (Target)

Angereichertes ¹⁶⁰Gd, i.e. >98% Niedrieger ^{nat}Tb Gehalt

Gadolinium hat 6 stabile isotopes,

2 davon mit massiven Neutron Queerschnitten!

Weltweit begrenzte Produktionskapazitäten und Lagerbestände an angereichertem ¹⁶⁰Gd

Recycling ist unerlässlich

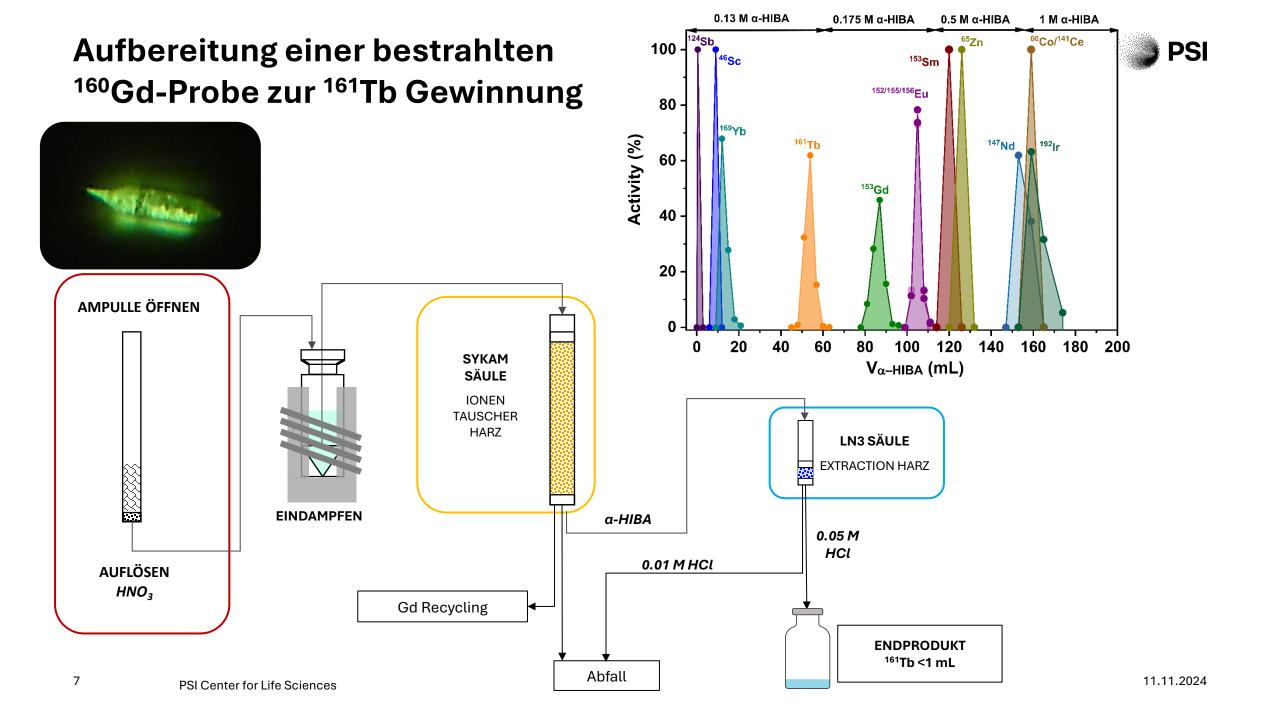
	Tb 155	Tb 156	Tb 157	Tb 158	Tb 159	Tb 160	Tb 161	Tb 162
h		5.3 h 24.4 h 5.35 d IT 88 e ⁻ , g ε	71 a	10.70 s 180 a ε γ 944	100	72.3 d , 1.7 , 299	6.95 d β- 0.5, 0.6	7.76 m 6- 1.4, 2.4
	γ 87, 105, 180 262		ε γ (54), e ⁻		σ 23.8	966 σ 570	γ 26, 49, 75 e⁻	60, 808
	Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18.479 h	Gd 160 ^{21.86}	Gd 161 3.66 m
	ı	σ 60330		σ 254000		β ⁻ 1.0		1.7 γ 3 . 1, 315 102
		σ _{n,α} 8E-5	σ 1.8		σ 2.22		σ 1.4	σ 19000

Bestrahlung

Hoher Neutronenfluss für maximale Ausbeuten aus

kleinen Proben

n	Facility		Neutron flux n/cm²/s	
H	SINQ	PAUL SCHERRER INSTITUT	2.8·10 ¹³	
	SAFARI-1 necsa We're in your world		2.1014	
	ILL	NEUTRONS FOR SOCIETY	1.5·10 ¹⁵	


Logistik

Die Reaktoren befinden sich im Ausland.

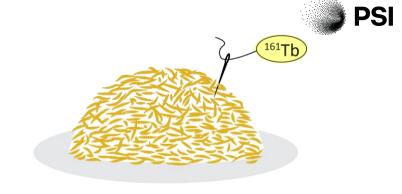
- Luftfracht
- Zollabfertigung
- Transport gefährlicher Güter

6

Anforderung an die Trennung ¹⁶¹Tb von ¹⁶⁰Gd

100 mg ¹⁶⁰Gd liefern 10-100 GBq ¹⁶¹Tb e.g. 2.3-23 μg
Target ist im Überschuss ≥5000 vorhanden
Als benachbarte Lanthanoide sind Tb und Gd
bekanntermaßen schwer zu trennen

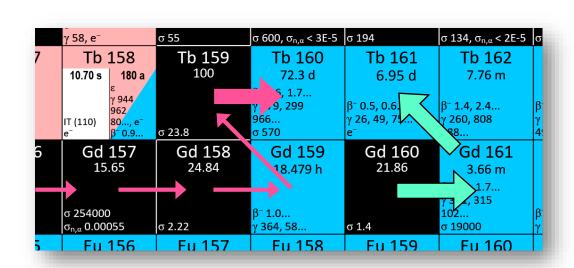
Trennungsverfahren geeignet für Fernarbeit in einer abgeschirmten Zelle. Die Trennung muss zuverlässig und effizient sein, **Einfachheit ist der Schlüssel zum Erfolg**.


Zulässige Gehalte an anderen Metallen, einschliesslich Gd:

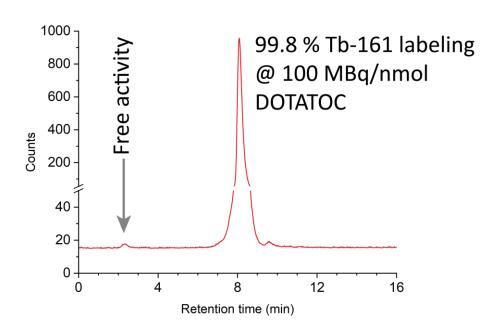
im tiefen ppb-Bereich.

(1 GBq/mL ≈ 230 ppb)

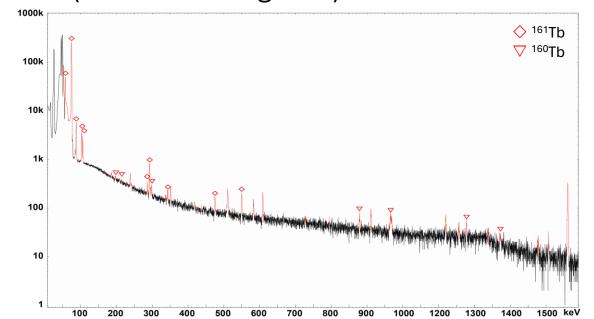
N.B. isotopische Beimengungen lassen sich chemisch nicht abtrennen



¹⁶⁰Tb: ein unerwünschtes Nebenprodukt


- Je nach Sorgfalt bei der Gewinnung, kann ¹⁶⁰Gd Spuren von ¹⁵⁹Tb enthalten
- 159Tb kann leicht zu 160Tb aktiviert werden
- 160Tb ist aufgrund seiner 10-mal längeren Halbwertszeit ein **Problem für den Abfall**
- Der ¹⁶⁰Tb-Gehalt begrenzt auch die Haltbarkeit von Radiopharmaka
- Die derzeitige Spezifikation für die Radionuklid-Reinheit liegt bei: ¹60**Tb ≤ 0.1** %
- Das Problem lässt sich lösen durch Vorreinigung vom 160 Gd
- Recyceltes ¹⁶⁰Gd hat dieses Problem nicht
- Mehrfacher Neutroneneinfang bei anderen
 Gd-Isotopen ergibt ebenfalls Spuren von ¹⁶⁰Tb

Qualitätskontrolle - Radioanalytik



 Radiochemische Reinheit (RCP) bestimmt durch Testmarkierung von DOTATOC

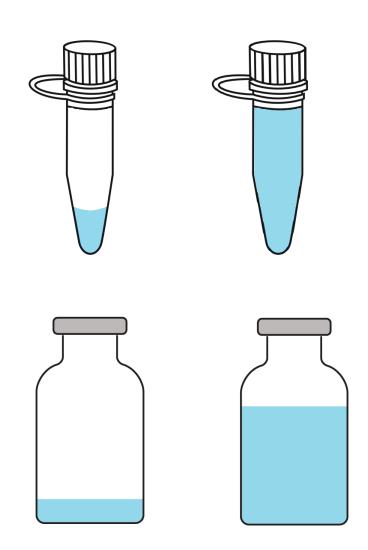
 RCP>99% @ apparent molar activity (AMA) 100MBq/nmol

- Radionuklidische Identität und Reinheit bestimmt durch γ-Spektrometrie
- Auswahl einer Linienkombination, die spezifisch für ¹⁶¹Tb ist
- Bei grossem ¹⁶¹Tb Überschuss ist der ¹⁶⁰Tb Gehalt schwierig zu bestimmen (starker Hintergrund)

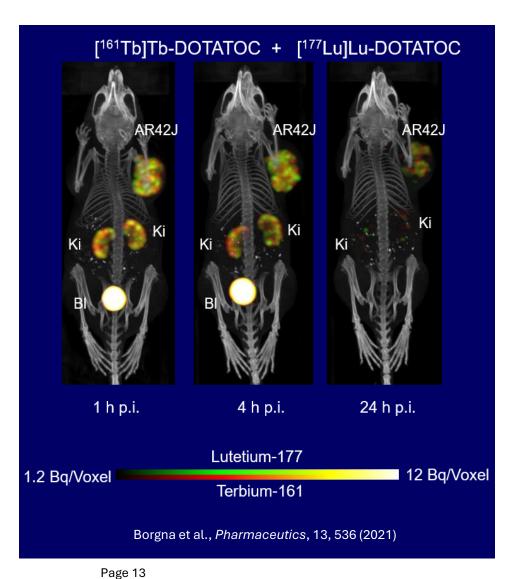
Qualität: 161Tb vs 177Lu

¹⁷⁷ LuCl ₃ *	¹⁶¹ TbCl ₃
------------------------------------	----------------------------------

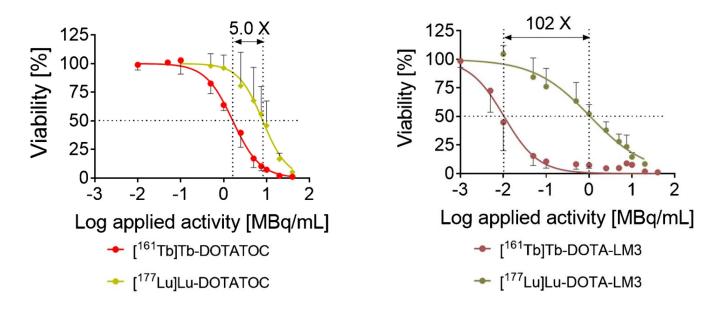
Test	Spezifikation	Spezifikation	
Aussehen	Klare und farblose Lösung	Klare und farblose Lösung	
		74.6 ± 1 keV	
	113 ± 1 keV 208 ± 1 keV	87.9 ± 1 keV	
ldentität (γ-spectrometry)		103.1 ± 1 keV	
		106.1 ± 1 keV	
		292.4 ± 1 keV	
рН	1–2	1–2	
	Cu: ≤ 1.0 µg/GBq	Cu: ≤ 1.0 μg/GBq	
Chamiagha Bainhait(ICD)	Fe:≤0.5 µg/GBq	Fe: ≤ 0.5 μg/GBq	
Chemische Reinheit(ICP)	Pb: ≤ 0.5 μg/GBq	Pb: ≤ 0.5 μg/ GB q	
	Zn: ≤ 1.0 μg/GBq	Zn: ≤ 1.0 μg/GBq	
Dadiana adiamana Assala assa	100 MBq/nmol	100 MBq/nmol	
Radiomarkierung Ausbeute	with RCP≥99%	with RCP≥95%	
Sterilität	Not required	Not required	
Bacterial endotoxins (LAL Test)	<175 IU/V (injectable dose)	<175 IU/V (injectable dose)	
Radionukl. Reinheit (γ-spectrometry)	^{177m} Lu ≤ 0.07 %	¹⁶⁰ Tb ≤ 0.1 %	
Radiochemische Reinheit (TLC)	≥ 99.0 % as ¹⁷⁷ LuCl ₃	≥ 99.0 % as ¹⁶¹ TbCl ₃	
Specifische Aktivität	> 3.0 GBq/µg	> 3.5 GBq/µg	


^{*} European Pharmacopoeia, *Lutetium (177Lu) Solution for Radiolabelling* (2016) ITM, EndolucinBeta (177Lu) Certificate of Analysis

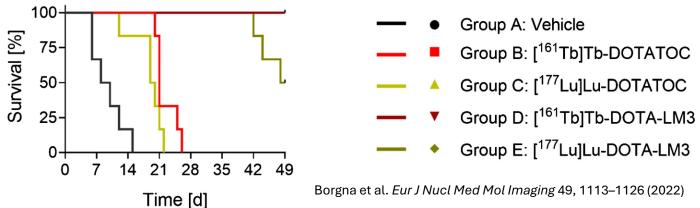
Auf die Form kommt es an


- 99 % der γ -Strahlung von 161 Tb liegt unter 100 keV
- Niedrig energetische γ -Strahlung wird erheblich durch Behälter absorbiert, Selbstabsorption ist auch ein Faktor.
 - Aktivitätsunterschiede von bis zu 14 % zwischen Behältern aus verschiedenen Materialien und mit unterschiedlicher Dicke
 - Aktivitätsunterschied von bis zu 2% je nach Volumen bei gleichem Behälter
- Es ist unerlässlich, ein geeignetes Set von Faktoren für die betreffende Ionisationskammer zu definieren!

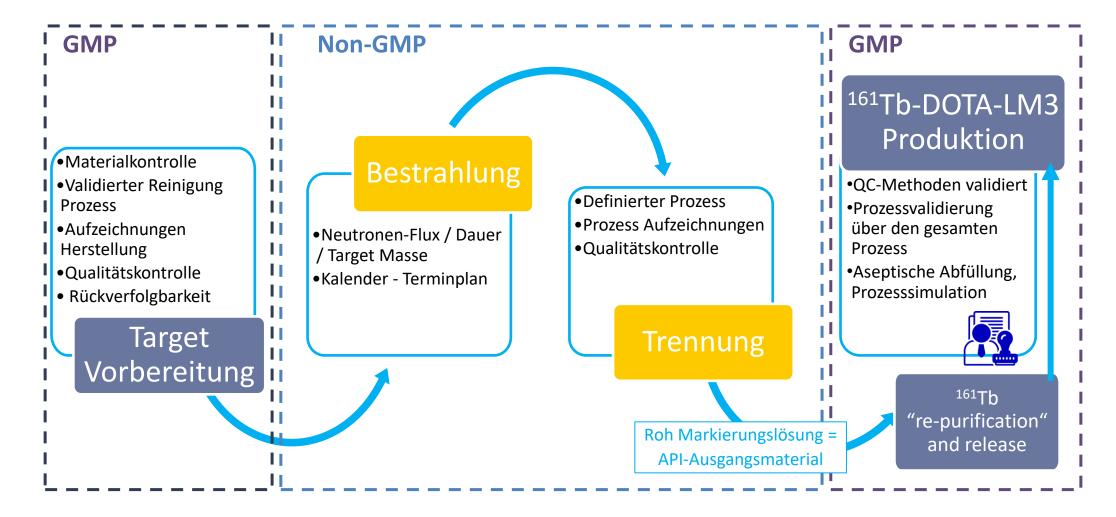
Juget, F., et al. (2022). EJNMMI Physics 9(1): 19.



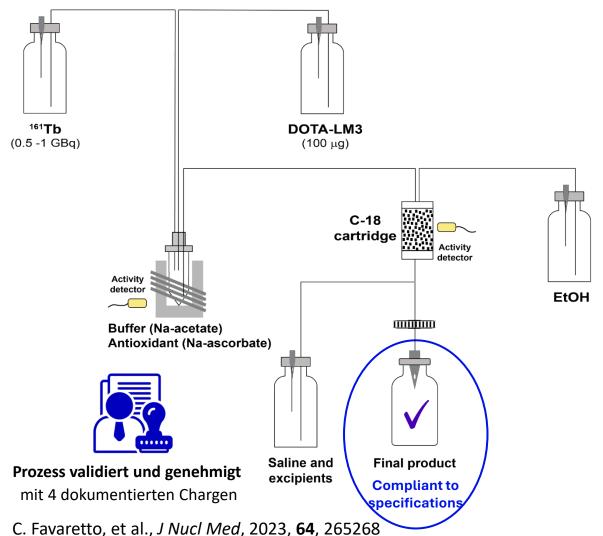
Klinische Versuche: 161Tb vs 177Lu



Lebensfähigkeit der AR42J Tumorzellen nach der Behandlung


Überlebensrate der Mäuse (Kaplan–Meier plot)

Herstellung und Charakterisierung von ¹⁶¹Tb-Radiopharmaka


14



Radiomarkierung von ¹⁶¹Tb-DOTA-LM3 in GMP mit vollautomatischen Kassettenmodulsystem

Produkt Zusammensetzung

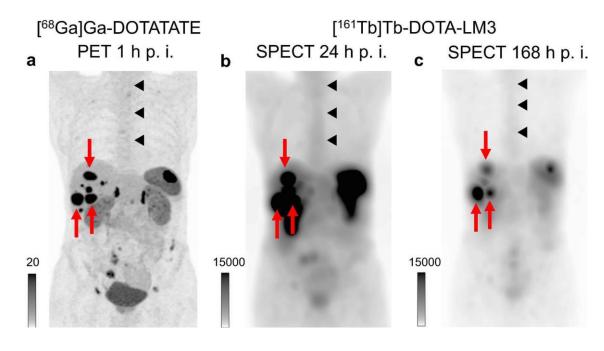
 161 Tb Activity (SLED) 0.5 ± 0.05 GBq $- 4.5 \pm 0.45$ GBq (re-purified)

DOTA-LM3 < 100 μg

Ascorbic acid 250 mg (2.5 mL 100mg/mL solution)

DTPA 19.5 mg (0.1 mL 195mg/mL solution)

EtOH 1.25 mL


Saline 18 mL

Erste klinische Versuche

[161Tb]Tb-DOTA-LM3 - Beta Plus Studie

NCT05359146

Phase 0A (Dosimetrie) der Studie abgeschlossen (8 Patienten, 17.04.23 – 27.02.24)

Universitätsspital
Basel

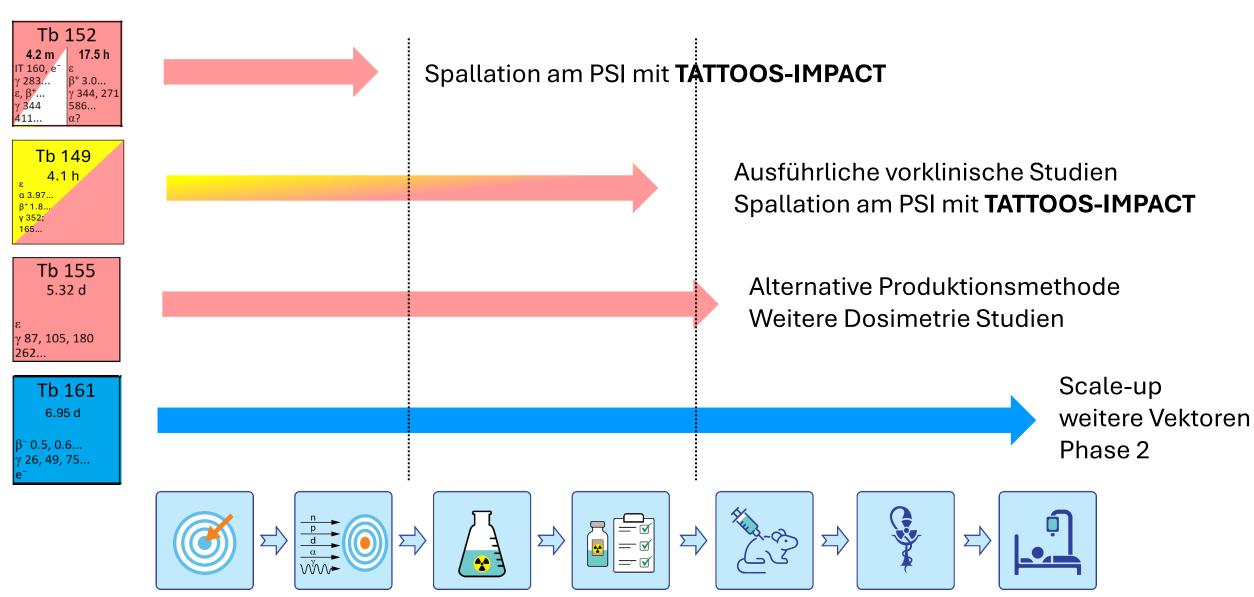
European Journal of Nuclear Medicine and Molecular Imaging

IMAGE OF THE MONTH

First-in-human administration of terbium-161-labelled somatostatin receptor subtype 2 antagonist ([¹⁶¹Tb]Tb-DOTA-LM3) in a patient with a metastatic neuroendocrine tumour of the ileum

Julia Fricke 1 · Frida Westerbergh 2 · Lisa McDougall 1 · Chiara Favaretto 1,3 · Emanuel Christ 4,5 · Guillaume P. Nicolas 1,4 · Susanne Geistlich 3 · Francesca Borgna 3 · Melpomeni Fani 6 · Peter Bernhardt 2,7 · Nicholas P. van der Meulen 3,8 · Cristina Müller 3,9 · Roger Schibli 3,9 · Damian Wild 1,4

Received: 21 December 2023 / Accepted: 31 January 2024 © The Author(s) 2024


Here, we report on the first patient (78-year-old man) with a metastatic, hormone-active (carcinoid syndrome) ileal neuroendocrine tumour (G1, Ki-67, < 3%), who received a test infusion of 1 GBq [¹⁶¹Tb]Tb-DOTA-LM3 in an ongoing prospective Phase 0 study. So far, the patient received long-acting octreotide, which was stopped 2 months before [¹⁶¹Tb]Tb-DOTA-LM3 infusion.

quantities of Auger electrons (1213%) with a high linear energy transfer over a short distance (< 40 keV/ μ m). Somatostatin receptor subtype 2 antagonists such as DOTA-LM3 bind to many more binding sites, which leads to a much higher tumour accumulation compared to somatostatin receptor subtype 2 agonists [2]. The preclinical evaluation confirmed the superior therapeutic efficacy of [^{161}Tb]

Zweite Studie: Phase 1 mit ¹⁶¹Tb-SibuDAB am laufen

Ausblick: was kommt als Nächstes?

Neue Produktionskapazitäten für medizinisch relevante Radionuklide in der Schweiz und Europa

Facilities	18 MeV cyclotrons	Injector II	SINQ Reactors	Spallation reaction including on-line mass separation	ne and off-line
Location	Insel/Uni Bern, USZ, HUG, ETHZ	PSI	PSI ILL, NECSA	CERN-ISOLDE/MEDICIS/IMPAC	T-TATTOOS
Radionuclides produced	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F, ⁴⁴ Sc, ⁶¹ Cu, ⁶⁸ Ga	^{43/44} Sc, ⁶⁴ Cu, ¹⁵⁵ Tb ⁶⁷ Cu, ¹⁶⁵ Er, ¹⁶⁷ Tm	⁴⁷ Sc, ¹⁶¹ Tb, ¹⁶⁹ Er, ¹⁷⁵ Yb	Karlsruhe chart of nuclides	"heat map" of
tweit führende tonenstrahlint		noch nie	"heat map" of r that can be pro tantalum-181 to	adionuclides duced on a	that can be puranium-238 at TATTOOS

20

dagewesene Aktivitäten von schwer

herstellbaren Radionukliden erzeugen!

Aknowledgements

Radionuclide Development group Dr. Nicholas van der Meulen

Dr. Chiara Favaretto Dr. Anzhelika Moiseeva

Dr. Zeynep Talip Colin Hillhouse

Edoardo Renaldin

Radionuclide - Production and Maintenance group

Roger Geissmann Alexander Sommerhalder Muhamet Djelili Dr. Hui Zhang

Clinical Drug Supply group

Susanne Geistlich Stefan Landolt **David Schmid**

Nuclide Chemistry group

Prof. Dr. Cristina Müller Dr. Francesca Borgna Fan Sozzi Susan Cohrs

Prof. Dr. Roger Schibli Prof. Dr. Robert Eichler

IRA-CHUV

Dr. Frédéric Juget Dr. Teresa Durán

CERN-ISOLDE

Dr. Karl Johnston Prof. Dr. Ulli Koester

CERN-MEDICIS

Dr. Thierry Stora

Laboratory of High Energy Physics (Unibe)

Prof. Dr. Saverio Braccini Dr. Gaia Dellepiane

Necsa

Prof. Dr. Jan Rjin Zeevaart

Institut Laue-Langevin

Prof. Dr. Ulli Koester

University of Gothenburg

Prof. Dr. Peter Bernhardt Frida Westerbergh

University Hospital Basel

Prof. Dr. Damian Wild Dr. Julia Fricke

Dr. Lisa McDougall

UNIVERSITÄT

199192

